Large Margin Classifier via Semiparametric Inference
نویسندگان
چکیده
In this paper, we construct a learning method of stochastic perceptron based on semiparametric inference, and show that this method produces large margin solutions. In semiparametric inference, the parameters are divided into structural parameters which are to be estimated and nuisance parameters in which we do not have any interest. Here, the weight vector of perceptron is de ned as structural parameters and the steepness of transfer function is de ned as a nuisance parameter. Usually, rough estimate is substituted to nuisance parameters and only structural parameters are estimated. To compensate the estimation error caused by rough estimate, an additional term is added to the derivative of likelihood. We will show that this additional term is related to the regularization term which causes large margin solutions. This work suggests that the success of large margin classi ers can be attributed to semiparametric inference.
منابع مشابه
Discrimination of the Heart Ventricular and Atrial Abnormalities via a Wavelet-Aided Adaptive Network Fuzzy Inference System (ANFIS) Classifier
The aim of this study is to address a new feature extraction method in the area of the heart arrhythmia classification based on a metric with simple mathematical calculation called Curve-Length Method (CLM). In the presented method, curve length of the under study excerpted segment of signal is considered as an informative feature in which the effect of important geometric parameters of the ori...
متن کاملSparse Max-Margin Multiclass and Multi-label Classifier Design for Fast Inference
We address the problems of sparse multiclass and multilabel classifier design and devise new algorithms using margin based ideas. Many online applications such as image classification or text categorization demand fast inference. State-of-the-art classifiers such as Support Vector Machines (SVM) are not preferred in such applications because of slow inference, which is mainly due to the large n...
متن کاملSemiparametric spectral modeling of the Drosophila connectome
We present semiparametric spectral modeling of the complete larval Drosophila mushroom body connectome. Motivated by a thorough exploratory data analysis of the network via Gaussian mixture modeling (GMM) in the adjacency spectral embedding (ASE) representation space, we introduce the latent structure model (LSM) for network modeling and inference. LSM is a generalization of the stochastic bloc...
متن کاملRecent Advances in Semiparametric Bayesian Function Estimation
Common nonparametric curve tting methods such as spline smooth ing local polynomial regression and basis function approaches are now well devel oped and widely applied More recently Bayesian function estimation has become a useful supplementary or alternative tool for practical data analysis mainly due to breakthroughs in computerintensive inference via Markov chain Monte Carlo simulation This ...
متن کاملBayesian inference for structured additive quantile regression models
Most quantile regression problems in practice require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference via Markov chai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000